
Calculation of vibrational properties of selenium

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys.: Condens. Matter 9 1049

(http://iopscience.iop.org/0953-8984/9/5/011)

Download details:

IP Address: 171.66.16.207

The article was downloaded on 14/05/2010 at 06:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/9/5
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter9 (1997) 1049–1066. Printed in the UK PII: S0953-8984(97)78386-3

Calculation of vibrational properties of selenium

C Oligschleger† and J C Scḧon‡
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Abstract. Using molecular dynamics with a classical interaction potential we present methods
for calculating both vibrational properties and thermodynamic quantities for solids and estimating
their temperature dependence. The density of states is given by the Fourier transformation of the
displacement autocorrelation function. Applying the harmonic approximation we calculate the
specific heatcv . Elastic constants are determined from the response of the structures to external
pressures and volume changes. As an example, crystalline and amorphous modifications of
selenium are considered.

1. Introduction

One of the central goals in physics, chemistry, and technology is the description and
prediction of properties of real molecules and condensed systems.

A crucial property of solids is their vibrational density of states (DOS) that can
be measured experimentally with inelastic neutron, infrared (IR) and Raman scattering,
since many thermodynamic properties, e.g. the specific heatcv, depend on the vibrational
spectrum. Furthermore, the low-frequency behaviour of the phonons is correlated with
the elastic properties of the solid, whereas the high-frequency optical modes typically
reflect the interactions between nearest or next-nearest neighbours. Therefore, a theoretical
investigation and simulation of the DOS can provide insight into both macroscopic properties
of the solid, e.g. elastic constants, and the microscopic dynamics of the atoms [1].

Numerical calculations of the vibrational DOS, e.g. using Born–von Kármán models,
are often based on the harmonic approximation of the energy, where the anharmonic terms
of the interaction potential are neglected. Here, we will present a method similar to the
one proposed by Beeman and Alben [2] to calculate the vibrational spectrum. In their
original paper, Beeman and Alben developed an algorithm for calculating the density of
states by solving the equation of motion (EOM), where the forces are given in the harmonic
approximation. The density of states is obtained by the Fourier transformation of the
displacement autocorrelation function observed over a sufficiently long time interval. The
EOM method suffers from the finite resolution of the frequencies and the lack of information
about eigenmodes of the structures, however.

Another method applied successfully to condensed matter in order to obtain the DOS
is the velocity-autocorrelation function [3, 4]. This method can be used effectively in the
simulation of liquids [5], where the velocity-autocorrelation function is also a measure for
the diffusion of the atoms.
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To determine the influence of anharmonic effects we have applied this method employing
the full interaction potential. This enables us to study the temperature dependence of
vibrational and thermodynamic properties of solids. From the density of states we can
derive the specific heatcv in the harmonic approximation [6]. Using constant-temperature
and constant-pressure molecular dynamics, we can also compute volume changes of the
structures, which allow us to calculate the thermal expansion coefficient. These volume
changes are connected with a change in the vibrational spectrum, leading in many systems
to a softening of modes. This observation is expressed in quantitative terms by the Grüneisen
parameter.

However, due to finite-size effects (Lcell < ∞), which place a lower bound on the
possiblek-vectors (|k| > 2π/Lcell), one cannot determine the elastic constants of the
structures from the vibrational density of states. Instead, we will estimate the elastic
constants and sound velocities by computing the response of the simulated structures to
applied stresses/strains.

A much more direct approach to the problem of determining eigenfrequencies and the
corresponding eigenmodes is the diagonalization of the dynamical matrix of the system.
Given a three-dimensional configuration withN atoms and an analytic interaction potential,
one can calculate the matrix of second derivatives of the potential energy with respect to the
positions of the atoms. Thus, diagonalization of this 3N ×3N matrix yields 3N eigenvalues
and eigenvectors. Although for large sparse systems there exist methods [7] for quickly
determining at least the lowest eigenvalues of the spectrum, the number of atoms which
can be simulated is often restricted due to storage limitations. From a physical point of
view, however, a much more important shortcoming of relying on the diagonalization of
the dynamical matrix is the total neglect of anharmonic terms in the potential.

In order to test and compare these two approaches, we have applied the corresponding
algorithms to structures of selenium (both crystalline and glassy configurations) generated
with a classical interaction potential [8].

In the next section, we describe the system which we have used as a test case for
the algorithms, and the corresponding interaction potential. In section 3, we explain the
methods in detail. The results are presented in section 4. Finally, we discuss our results,
and compare with experiments.

2. Example system

Selenium readily forms glasses and amorphous structures [9]. There exist several crystalline
structures, including two (α- and β-) monoclinic forms with four eight-membered rings
packed differently in the unit cell. The most stable crystalline phase under standard
conditions consists of infinite helical chains with trigonal symmetry [9, 10].

The potential that we have used was taken from the literature [8]. The parametrization
of the potential was chosen to mimic certain structural properties of selenium: the potential
was fitted to reproduce bond lengths, angles and bonding energies of small Se molecules
[11], and gives a reasonable description of the trigonal crystal [10, 12, 13].

In the following we give a short description of the potential that resembles the one
proposed by Stillingeret al to model sulphur [14]. The covalent bonds between Se atoms
are modelled using short-range interactions. The effective interatomic potentialU is strongly
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repulsive for small interatomic distances and includes two- and three-body interactions†:

U =
∑
i<j

V2(rij ) +
∑

i<j<k

h(rij , rkj , 2ijk) + cyclic permutations (1)

where V2(rij ) is the two-body contribution of the potential energyU for atomsi and j

separated by distancerij . The three-body interaction depends onrij , rjk, and 2ijk, the
angle at atomj subtended byrij and rjk. The three-particle energyh(rij , rjk, 2ijk) is
given by

h(rij , rjk, 2ijk) = V3(rij )V3(rjk)(b1(cos2ijk − cosβ2)
2 + b3 − 0.5b1 cos4 2ijk) (2)

with b1 = 34.4866, b3 = 11.9572 andβ2 = 95.3688◦. The three-body term is purely
repulsive and strongly favours the coordination number two as observed in experiment.
The angular dependence reflects the preference forθ -values of≈100◦. The cos4 term
was introduced in order to stabilize the Se chains of the trigonal phase against torsional
displacements relative to each other.

To simplify the numerical calculations, the radial parts of the two- and three-body
potentials of equations (1) and (2) are described by decaying exponential functions.
Discontinuities in the vibrational frequencies are avoided by cutting off the potentials
smoothly as polynomials to yield continuous functions with continuous first and second
derivatives at the cut-off distances:

V2,3(r) =


a2,3 exp(αr) + b2,3 exp(βr) + c2,3 exp(γ r) r < 1.6

d2,3(r − r2,3)
5 + e2,3(r − r2,3)

4 + f2,3(r − r2,3)
3 1.6 < r < r2,3

0 r > r2,3.

(3)

Table 1. Parameters for the two- and three-body potentials (in r.u.) (from reference [8]).

Two-body potential Three-body potential

r < 1.6 r < 1.6

a 928.12 8.8297
b 0.268 02 −2.5932
c −16.599 −6.9384
α −7.984 −0.476 01
β −0.000 077 781 −1.5637
γ −1.8634 −0.370 49

1.6 < r < 2.37 1.6 < r < 2.35

d 1.868 25 0.225 56
e 4.586 28 0.125 27
f 3.620 29 −0.210 19
r2,3 2.37 2.35

The exponential part of the interaction potential includes the nearest-neighbour shell
(1.6 r.u. = 2.79 Å), while the long-range behaviour is described by the cut-off function.
The cut-off distances are denoted byr2,3 for the two- and three-body potentials, respectively.
The corresponding parameters are listed in table 1.

† We use ‘reduced’ units (r.u.) based on the experimental bond length (1.337 r.u. = 2.34 Å) and dissociation
energy (0.697 r.u. = 2.24 eV) of the Se8 molecule.
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3. Methods and calculations

Molecular dynamics (MD) enables us to investigate structural, dynamical and
thermodynamic properties of complex systems [1, 5, 15]. Using MD methods, one can
simulate the time evolution of interacting particles and determine their dynamics by solving
the equation of motion (EOM):

mi r̈i = Fi = −
∑

j

∂U

∂rij

. (4)

Here, mi is the mass of atomi, r̈i is the acceleration andFi the force on particlei,
which is the derivative of the total potential energyU with respect to the coordinates of the
atoms.

This numerical integration of Newton’s equation of motion is performed with a discrete
time-stepτ � tmin, where tmin is the inverse of the largest vibrational frequency of the
system. We use the velocity Verlet algorithm [16] to integrate the EOM with time-steps
τ < 3.88 fs and smaller.

To avoid or at least to reduce surface effects, we apply periodic boundary conditions. We
simulate either microcanonical(N, V, E) or isobar/isothermal(N, p, T ) ensembles. The
pressure is calculated using a method proposed by Nosé and Klein [17]. The temperature
of the system is computed from the equipartition theorem, and is given by

kBT = 1

3N

∑
iα

mi〈v2
iα〉 (5)

wherekB is the Boltzmann constant.
Due to the use of the short-range interaction potential described in the previous section,

we are able to reduce the amount of numerical calculations through the use of neighbour
lists.

3.1. The density of states

To investigate the vibrational properties of solids with numerical methods, one has to keep in
mind that computer storage and CPU time limit the number of atoms which can be simulated.
Using classical methods like MD, the accessible number of particles representing the solid
ranges from several hundreds of atoms upward to several thousands of particles. Therefore,
modes with long wavelengths (like sound waves) which are always present in solids cannot
be described by such confined, small structures with side-lengths of the order of typically
only ten nearest-neighbour distances. Thus, the system size defines the shortest possible
k-vector and leads to finite-size effects.

For the simulation of the vibrational DOS, we use an algorithm proposed by Beeman
and Alben [2]. In this algorithm the EOM is solved numerically by setting all velocities of
the particles att = 0 equal to zero, and the initial displacements of the atoms are set to

xiα(t = 0) = x0
iα (6)

with

x0
iα =

√
2(cos2iα)q

A0
iα =

√
2(cos2iα)/q

(7)

wherei denotes the atoms andα the Cartesian directions. The angles2iα are distributed
randomly between 0 and 2π , and the magnitude of the displacements is scaled byq and
determines the temperature of the samples.
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The DOSZ(ω) is given by

Z(ω) =
〈

2

π

∫ tobs

0

∑
i,α

A0
iαxiα(t)(cos(ωt)) exp(−λt2) dt

〉
(8)

where〈· · ·〉 denotes the ensemble average. The choice of random angles2iα in the initial
conditions for the atomic displacementsA0

iα andx0
jβ has the advantage that for the average

of products of random cosines we find

2

π
〈cos(2iα) cos(2jβ)〉 = δij δαβ. (9)

Using a non-zero value ofλ, the exponential factor in equation (8) leads to a broadening
of the δ-peaks in the frequency spectrum.

In the harmonic approximation, which had been employed in the EOM procedure by
Beeman and Alben [2], one can decompose the random, initial displacements as well as the
atomic displacements at timet into the eigenvectors of the system:

xiα(t) = 1√
mi

∑
n

Un(iα)cn cos(ωnt) (10)

whereUn(iα) is the component of atomi in direction α of the nth normal mode of the
system considered,cn are the expansion coefficients (amplitudes) of these vibrations andωn

is the corresponding frequency of thenth eigenmode. In particular, one can write a similar
equation for the initial conditions; and one finds an expression for the amplitudescn:

cn =
∑
jβ

Un(jβ)x0
jβ

√
mj . (11)

Then, the density of states can be written as

Z(ω) =
〈

2

π

∫ tobs

0

∑
i,α

∑
j,β

∑
n

√
mj

mi

Un(iα)Un(jβ)A0
iαx0

jβ cos(ωnt) cos(ωt) exp(−λt2) dt

〉
.

(12)

Rewriting the product of the cosines as a sum leads to

Z(ω) =
〈

1

π

∫ tobs

0

∑
i,α

∑
j,β

∑
n

√
mj

mi

Un(iα)Un(jβ)

× A0
iαx0

jβ(cos((ω + ωn)t) + cos((ω − ωn)t)) exp(−λt2) dt

〉
. (13)

Due to the frequency–time uncertainty principle, the spectral resolution1ω is inversely
proportional to the observation timetobs. As shown in the original paper [2], the finite
integration timetobs and a non-zero value ofλ will give a Gaussian-like contribution for
each mode, leading to a broadening of the vibrational spectrum.

It is only in the limits tobs → ∞ andλ → 0+ that the integral

1

π

∫ tobs

0
cos(xt) exp(−λt2) dt

will give a δ-peak for each vibrational state. Thus, the choice of the parameterλ and the
finite observation timetobs influences the resolution of the spectral density and the spectral
broadening of the vibrational modes.
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Obviously, in order to obtain the DOS with this procedure, one has to average over
several (Nr ) EOM runs. In order to estimate the quality of the resulting spectrum, we have
investigated how the accuracy depends on the number of runs used in averaging,Nr .

The amplitudeq of the initial random atomic displacements is intimately connected to
the temperature of the system. The larger the amplitude, the higher the kinetic energy of
the system, which essentially defines the temperature.

Since the applied effective model potential contains anharmonicities, we can study their
influence on the spectral properties, which becomes more and more important at higher
temperatures when the amplitudes of the atomic vibrations are no longer small. A very
important consequence of the anharmonic potential is the phenomenon of thermal expansion
of solids which cannot be explained by the harmonic approximation. Another important
influence of anharmonicities is the finite lifetime of phonons which are no longer stationary
states of the system. Thus, phonons will decay or merge into other ones. However, since this
decay of the eigenmodes is rather slow, compared to many vibrational processes, one can
continue to describe such phenomena, e.g. the specific heat, in terms of phonons. Typical
lifetimes of phonons are of the order of 10–100 ps (or even longer), at temperatures well
below the melting point [18]. In order to test the assumptions, we have prepared our system
in a well defined state by excitation of eigenmodes and followed the dynamics. We observe
that the single eigenmodes do not decay appreciably on a time-scale less than 40 ps. This
time span is significantly longer than the time necessary to calculate the vibrational DOS
(several ps). Thus, one can still interpret the DOS computed using equation (8) as the DOS
of 3N (harmonic) phonons, with possibly shifted frequencies.

As was pointed out in the introduction, a direct way to calculate the vibrational spectrum
is to diagonalize the dynamical matrixD, whose elements are

D
αβ

ij = 1√
mimj

∂2U

∂Rα
i ∂R

β

j

. (14)

Here U is the total potential energy (equation (1)), the derivatives are with respect to
the positionsRi andRj of atomsi andj , andα andβ stand for the Cartesian directions.
mi andmj are the atomic masses. For a block containingN atoms one has to diagonalize
a 3N × 3N matrix, whose eigenvalues are the squares (ω2

σ = (2πνσ )2) of the vibrational
mode frequencies. The diagonalization can be solved with standard routines, e.g. EISPACK,
which use factorization methods to diagonalize matrices [19]. The great advantage of this
direct method is that it allows us to calculate all the eigenfrequencies and eigenmodes of the
structure. Comparing the results of this direct method with the spectrum computed using
the EOM method, we can judge the quality of the latter technique.

3.2. Elastic constants

As was mentioned in the previous section, the finite system sizes lead to a cut-off at the
low-frequency end of the vibrational spectrum.

This systematic lack of information about acoustic modes can be partly alleviated by
calculating the sound velocities, which determine the Debye spectrum

ZD(ν) = 3

ν3
D

ν2 (15)

from the elastic constants. In equation (15),

νD = c̄

(
3ρ

4πm

)1/3

(16)
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Figure 1. The vibrational density of statesZ as a function of the frequencyν (THz) for a
trigonal Se crystallite with 1470 atoms/cell (the dotted line) and with 11 760 atoms/cell (the
solid line), respectively. Both spectra are averaged over 10 different sets of initial conditions,
with a displacement amplitudeq = 0.001 (T ≈ 0.2 K) and an observation timetobs = 1800
MDS. The inset shows the low-frequency range of these spectra: solid line: the spectrum for
the system withN = 11 760 atoms; dotted line: the spectrum for the system withN = 1470
atoms. One can clearly see the system size effect on the lowest possible frequency.

where c̄ is the average sound velocity, andρ is the density of the structure considered.
The—in the case of trigonal Se, anisotropic—sound velocities are directly connected to the
elastic constants:

vij = √
cij /ρ. (17)

We calculate the elastic constants of the structure from the change in potential energy,
1Epot :

1Epot = −
∑
αβ

Pαβεαβ + V

2

∑
αβγ δ

εαβCαβγ δεγ δ + 1

2

∑
αβγ

Pαβεαγ εγβ (18)

due to an applied strain

Rm
α → Rm

α +
∑

β

εαβRm
β . (19)

HereRm
α is the coordinate of atomm in directionα andε is a transformation matrix,

which determines the shape of the system cell and the relative dilatation/compression of the
structure.
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Figure 2. The vibrational density of statesZ as a function of the frequencyν (THz) for a trigonal
Se crystallite with 1470 atoms/cell. We present the result for one set of initial conditions (the
solid line), together with the results obtained by averaging over 10 sets (the dashed line) and 20
sets (the dotted line). The damping factor isλ = 4/t2

obs.

The first term in equation (18) accounts for the work done against all of the forces
for a system which was not prepared in a configuration in equilibrium with respect to
volume changes.Pαβ is the virial of the forces. The third term, present for shears only,
is a correction for the volume change under a finite shear, and theCαβγ δ are the elastic
constants (in the Voigt notation one has e.g.c11 = C1111, c44 = C2323 [20]).

For symmetry reasons, trigonal Se possesses six independent elastic constants:
c11,33,44 ↔ v11,33,44—longitudinal; c66,13,14 ↔ v66,13,14—transverse;c12 = c11 − 2c66 ↔
v12—transverse.

Applying appropriate stresses and strains one can determine the energy changes of the
system and, using equation (18), one can calculate the corresponding elastic constants.

We use constant-volume MD, in order to measure the internal pressures in the system
that appear as response to a volume change initially applied (cf. equation (19)). The resulting
internal pressures are a measure of the product of the volume expansion coefficientκ and
the bulk compressionK̃. Furthermore, we also perform constant-pressure simulations to
calculate the resulting volume changes of the configurations. These volume changes can
be used to determine the thermal expansion coefficientκ. The advantage of utilizing MD
instead of static methods lies in the possibility of estimating the temperature dependence of
the elastic constants.
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Figure 3. The vibrational DOSZ versus the frequencyν (THz) for a trigonal Se crystallite
with 1470 atoms/cell, for different damping factors:λ = 1/t2

obs (the solid line),λ = 2/t2
obs (the

dashed line),λ = 3/t2
obs (the chain line) andλ = 4/t2

obs (the dotted line).

4. Results

4.1. The vibrational density of states

In the following we will investigate systematically the influence of the parameters listed in
subsection 3.1 on the DOS.

4.1.1. The system size and finite-size effects.To investigate system size effects we study
structures consisting ofN = 1470 and 11 760 atoms in the simulation cell. In figure 1,
we show the resulting densities of states for trigonal crystals comprisingN = 1470 (the
dashed line) andN = 11 760 atoms (the full line), respectively. To calculate the vibrational
spectra, the EOM of these structures are integrated for a time intervaltobs = 1800 MDS
(which corresponds to approximately 3.88 fs). We use ten sets of initial conditions with an
amplitudeq = 0.001 (which corresponds to a temperatureT ≈ 0.2 K). The damping factor
λ is set to 4/t2

obs.
The overall features, e.g. the positions of the peaks and the shape of the vibrational

spectra, are very similar for the two system sizes. However, as shown in the inset, the
lowest frequency scales approximately with the system size. This result follows from the
fact that doubling the linear dimensions of the structure halves the frequency of the phonons
that can exist in solids limited in system size.
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Figure 4. The vibrational density of statesZ as a function of the frequencyν (THz) for a
trigonal Se crystallite with 1470 atoms/cell, for different observation times:tobs = 900 MDS
(the solid line),tobs = 1800 MDS (the dashed line) andtobs = 2700 MDS (the dotted line).

4.1.2. The number of sets,Nr , used for the averaging procedure.To obtain a good
approximation of the vibrational spectrum with this procedure, one has to average over
several sets of initial atomic displacements to improve the accuracy of the spectrum. We
determine the displacement autocorrelation for a trigonal crystal with 1470 atoms; the
amplitude of the atomic displacements isq = 0.01. The trajectories are followed over
an observation time of 1800 MDS. The damping factor was chosen asλ = 4/t2

obs. Figure 2
shows the spectrum for a single set of initial conditions (solid line). Averaging over 10
different sets of initial displacements yields a more accurate spectrum (the dashed line). For
comparison, we also show in figure 2 the resulting DOS calculated on the basis of 20 sets
of random atomic displacements (the dotted line).

The difference between the spectrum with just one set of initial displacements and the
other two is striking. Most of the structures and peaks present in the spectrum of a single
EOM run vanish once we average over several sets. But the spectrum with just one set
already exhibits properties of the typical DOS nevertheless.

The difference between the averaging over 10 different sets of initial displacements
and 20 sets is practically negligible. Thus, using 10 sets appears to be sufficient to obtain
reliable results in the case of selenium.

4.1.3. The influence of the damping factorλ and finite observation timetobs on the spectral
broadening. The effect of the choice of the damping factorλ is investigated for a crystal
with N = 1470 atoms, a displacement amplitudeq = 0.01, 10 sets of different initial
conditions and an observation timetobs = 1800 MDS. In figure 3 we plot the result for
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λ = 1/t2
obs (the solid line), forλ = 2/t2

obs (the dashed line), forλ = 3/t2
obs (the chain line),

and forλ = 4/t2
obs (the dotted line), respectively.

The resolution of the frequency spectra increases with decreasing damping factorλ, and
more and more details of the DOS of the finite-sized system become visible.

As mentioned in subsection 3.1, the integration timetobs determines the spectral
resolution of the calculated vibrational DOS. To clarify this point, we have performed
MD runs with different observation times.

In figure 4 we plot the resulting spectra obtained for different integration timestobs with
damping factorsλ = 4/t2

obs. In all cases, the trigonal crystallite consists ofN = 1470
atoms, and the amplitude of the initial displacements is set toq = 0.01. In all simulations,
10 different sets of initial conditions are used for the calculations of the average spectral
densities. In figure 4 we show the vibrational spectrum obtained using the integration times
tobs = 900 MDS (the solid line),tobs = 1800 MDS (the dashed line) andtobs = 2700 MDS
(the dotted line), respectively.

Clearly, an increase of the observation time yields a higher spectral resolution of the
DOS in agreement with the uncertainty relation, and details of the structure of the underlying
vibrational spectrum become more visible.

4.1.4. The correlation between the amplitudeq and the temperature. The amplitude of the
initial random atomic displacements influences the total energy of the system. The larger
the amplitude of the atoms, the higher the total energy of the system, which is equally
distributed between the potential energy and the kinetic energy (temperature), due to the
equipartition theorem.

If the atoms are displaced far enough from their equilibrium positions, they can ‘feel’
the anharmonicity of the interaction potential. To study the influence of this anharmonicity,
we perform MD runs with different amplitudes of the initial random displacements. We
simulate a trigonal crystal under zero pressure and temperatures ranging from about 0.2 K
to 180 K. In figure 5 the resulting spectrum of a crystal with temperatureT ≈ 0.2 K
(q = 0.001; the solid line) is plotted; we also give the spectra for calculations performed
at T ≈ 90 K and 180 K, withq = 0.025 (the dashed line) and 0.035 (the dotted line),
respectively.

At the high-frequency end, we observe a shift in the spectrum towards lower frequency
with increasing temperature. Furthermore, the volume of the crystallite grows with
increasing temperature. The shift in the frequency spectrum connected with volume change
of the structures can be expressed by the Grüneisen parameterγ :

γi = −∂ ln ωi

∂ ln V

γ =
∑

i

cviγi

/∑
i

cvi

(20)

whereγi is the partial Gr̈uneisen parameter of modei andcvi is the contribution of modei
to the specific heatcv. From our spectra we determine a Grüneisen parameterγ = 1.5 that
deviates from the values found experimentally by Grosseet al who report the Gr̈uneisen
parameterγ = 1.9–0.9 forT = 10–300 K [21].

The deviation of our theoretical value from the one observed in experiment can be
explained by the insufficient description of the temperature dependence of the frequency
spectrum, caused by the imperfect interaction potential.
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Figure 5. The vibrational density of statesZ as a function of the frequencyν (THz) for a
trigonal Se crystallite with 1470 atoms/cell. The temperature of the system isT ≈ 0.2 K (the
solid line),T ≈ 90 K (the dashed line), andT ≈ 180 K (the dotted line), respectively.

4.1.5. Comparison of the EOM method and the direct diagonalization.Figure 6 (the solid
line) shows the density of statesZ(ν) calculated for a crystallite of 1470 Se atoms at
T = 0 K, using matrix diagonalization.

The spectrum of the 4410 eigenfrequencies of the trigonal structure is plotted using bins
on the frequency axis with a bin width1ν = 0.103 THz. Comparing the exact spectrum
with a DOS obtained from EOM runs (the dashed line), which corresponds to the spectrum
at temperatureT ≈ 0.2 K, the lowest temperature that we have used in our simulations),
we find a satisfactory agreement between the two spectra. The location of the main peaks
of the DOS is identical in the two cases. There exist some deviations in the location of
shoulders, which might be due to the choice of the bins used in plotting the spectrum
in figure 6. We note that the calculation of the vibrational DOS using the EOM method
yields a smooth and continuous spectrum, due to the finite resolution in the frequency
range. In contrast, employing direct diagonalization methods, the resulting spectra were
rugged because the small systems that can be treated with these techniques possess discrete
eigenvalues. Of course, the spectrum becomes more dense when the size of the system is
increased. Nevertheless, the main advantage of diagonalization methods is the possibility
of determining (in the harmonic approximation) the eigenvalues and eigenvectors of the
structures explicitly.

4.1.6. Comparison of the calculated crystalline (optimal) spectrum with experiment.The
reliability of the potential employed can be checked by comparing the calculated results with
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Figure 6. The vibrational density of statesZ as a function of the frequencyν (THz) for
a trigonal Se crystallite with 1470 atoms/cell. The spectrum is derived by diagonalizing the
dynamic matrixD [8].

experiments. The agreement is mostly satisfactory, although the vibrational DOS measured
by Gompf [22] reveals a higher density at the low-frequency end of the spectrum than
we find in our model. Also, the gap separating the middle part of the spectrum from the
high-frequency modes is too small, and the highest frequencies are too low, compared with
experimental findings [23, 24].

4.1.7. Glasses. In order to extend our simulation to other, non-crystalline structures we
have performed simulations of the vibrational spectrum of Se glass. Using the EOM method
we average over 10 different Se glasses found in previous simulations [25]. The structures
comprise 1470 atoms. As parameters for the EOM runs, we employq = 0.002, Nr = 10,
tobs = 2700 MDS, andλ = 4/t2

obs. Figure 7 shows the calculated vibrational DOS of Se
glass. In contrast to the spectrum of the trigonal phase, we do not find a pronounced gap
in the spectrum. But, nevertheless, we observe a high-frequency peak typical for selenium.
Some details of the spectrum forν < 5 THz that are reported by Bondybey and English
[26] are not reproduced by our results; in particular, the peak positions of the librational
and torsional modes are not separated. These deviations from experiment are due to the
interaction potential that we have employed in our calculations. Since the spectrum is
obtained at a temperatureT = 3.7 K, we can compare the EOM result with a calculation
based on the direct diagonalization of the dynamical matrix (T = 0 K). The differences are
practically negligible. This result confirms the strength of the EOM algorithm as a method
for determining spectral properties.
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Figure 7. The vibrational density of statesZ as a function of the frequencyν (THz) averaged
over 10 Se glasses with 1470 atoms/cell each. The spectrum is obtained by employing the EOM
algorithm.

Table 2. Elastic constants compared with experiments (reference [28]).

Molecular dynamics Experiments

Cij dCij /dT

(GPa) 4 K 190 K (107 Pa) 0 K 300 K dCij /dT

C11 122.3 122.8 0.25 25.0 16.7 to 19.0−1.36 to−2.6
C33 181.7 180.4 −0.68 91.0 74.1 to 105.0−2.5 to 0.9
C44 37.5 36.7 −0.48 24.0 12.5 to 18.2 −2.2 to 0.0
C66 25.3 24.6 −0.37 10.0 5.8 to 8.0 −0.95 to−0.62
C12 71.7 73.6 1.00 5.0 7.0 0.67
C13 98.8 100.6 0.98 23.0 18.4 −1.3
C14 −14.53 −14.52 0.004 −9.0 −7.6 to−5.0 1.0

4.2. Elastic constants

In table 2 we show the elastic constants at different temperatures and give estimates of
the temperature dependence. The numerical results are compared with experiment. The
rather large discrepancies between our calculations and experiments can be explained by
the insufficient description of the low-frequency modes and their influence on the dynamics
of the system, and by the absence of the long-wavelength acoustic modes in our model.
These results are not unexpected, since the spectrum of the modelled trigonal selenium has
already shown that the low-frequency modes, which are important for the elasticity of a
material, are not described satisfactorily using our model interaction potential. Similarly,
the dependence on temperature is too weak, since the low-frequency modes in the model
system are too high.



Calculation of vibrational properties of selenium 1063

4.3. Thermodynamic properties

In the following, we will give results concerning some thermodynamic properties and
estimate their temperature dependence.

4.3.1. Thermal expansion.From the temperature dependence of the volume, we calculate
the thermal volume expansion coefficientκ:

κ = 1

V

(
∂V

∂T

)
p

. (21)
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Figure 8. The volumeV of the trigonal crystal plotted versus the temperatureT .

In figure 8, we plot the volumeV of the trigonal Se crystal averaged during constant-
pressure/temperature MD runs versus the corresponding temperatureT . The values of the
thermal expansion coefficientκ range from 2.1×10−5 K−1 to 2.6×10−5 K−1 for T = 0.2–
180 K. Experimentally the thermal expansion coefficientκ is found to be 0.3 × 10−5 K−1

to 12.6 × 10−5 K−1 for T = 10–300 K [21].
Furthermore, the determination of the internal average pressurepint arising in MD runs

at constant volume and temperature enables us to calculate the bulk compressionK̃ via

κK̃ =
(

∂pint

∂T

)
V

(22)

where κ is the thermal volume expansion coefficient. From equation (22), we derive
K̃ ≈ 10.59 × 1011 dyn cm−2. Experimentally,K̃ = 1.74 × 1011 dyn cm−2 has been
reported [21].

4.3.2. The specific heat.From the vibrational DOS, we can determine the specific heatcp

in the harmonic approximation [27]:

cp(T ) = 3kB

∫
dν

[(
hν

2kBT

)2/
sinh2(hν/2kBT )

]
Z(ν). (23)
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In the low-temperature limit the specific heat of a perfect crystal is proportional toT 3.
But the low-temperature specific heat in glasses is typically an order of magnitude larger
than in their crystalline counterparts due to the existence of additional low-frequency modes.
In figures 9(a) and 9(b) we plot the specific heat ascp/T 3 for both the Se glass and the
trigonal crystal. Note that, because of the low-frequency modes missing in the simulated
system, the calculated specific heat of the model is lower than that of ‘real’ selenium.
Including the Debye contribution of the long-wavelength phonons, the difference between
the calculation of the specific heat of the trigonal structure and the experimental values is
reduced.
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Figure 9. The specific heatcp in units of 3kB divided by T 3 plotted versus the temperature
T in a double-logarithmic plot. (a) The full line shows the contribution of the spectrum of the
glass plotted in figure 7. Diamonds show experimental data of Gauret al [29]. (b) The dotted
line shows the contribution of the spectrum of the trigonal crystal plotted in figure 5 (the solid
line). The dashed line is the specific heat calculated for the spectrum with Debye correction.
Diamonds show experimental data of Gauret al [29].
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5. Discussion and conclusions

Trying to calculate the DOS using MD is based on the fact that the vibrations of the atoms
will dominate the dynamics of the atomic motions, and that vice versa the determination of
the time evolution of the atomic displacements elucidates the vibrational spectrum.

As we have shown, one has to choose the parameters in the simulations (the number
of atoms, number of different runs, displacement amplitude, observation time and damping
factor) appropriately, in order to get a clear understanding of the vibrational DOS.

In addition, by applying stresses or volume changes, we can gain information about the
elastic behaviour of the system. Since the elastic constants are directly connected to the
sound velocities of a solid, their determination can at least alleviate the dearth of information
concerning the low-frequency range of the DOS caused by the finite size of the systems
modelled.

Quite generally, most problems encountered when applying these methods can be traced
back to the finite size of the systems tractable using computers, leading to a lack of long-
wavelength phonons in the simulations, and to the reliability of the interaction potential
employed, especially with regard to the modelling of the soft modes.

These considerations also apply to our example, where the main shortcomings of the
DOS and the thermodynamic properties computed are due to the lack of low-frequency
acoustic modes. This also influences the simulation of the elastic behaviour of the trigonal
crystal and of the amorphous structures of selenium. However, one should keep in mind
that the potential had not been fitted to experimentally determined elastic constants, but
instead to structural properties like bond lengths and bond angles of selenium.

To summarize, we have investigated the use of MD simulations to obtain information
about vibrational and thermodynamic properties of solids. The great advantage of
MD methods compared to direct diagonalization methods, when applied for calculating
vibrational properties, lies in the possibility of gaining insight into anharmonic effects of
solids if one can employ good anharmonic interaction potentials. Taking anharmonic effects
into account, the algorithms presented are useful in determining the temperature dependence
of thermodynamic quantities.
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